

Algebra Cheat Sheet

Order of Operations PEMDAS: Properties of Real Numbers:

P=Parenthesis

E= Exponents

M= Multiplication

D= Division

A= Addition

S= Subtraction

rioperules of iteal waitbers.

Commutative Property: a + b = b + a

Associative Property:(a + b) + c = a + (b + c)

Distributive Property: a(b + c) = ab + ac

Zero Property:

Identity: a + 0 = a

Inverse: a + -a = 0

 $a \times 0 = 0$

(ab)c = a(bc)

 $a \times 1 = a$

ab = ba

 $a \times \frac{1}{a} = 1$

Real Numbers:

Real Numbers:

... - 2, $-\sqrt{2}$, 0, $\frac{1}{2}$, 1, π , $\sqrt{3}$,...

Rational Numbers:

 $\dots, -\frac{3}{2}, -1, -\frac{1}{2}, 0, \frac{1}{2}, 1, \frac{3}{2}, \dots$

Integers:

..., -3, -2, -1, 0,1,2,3, ...

Whole Numbers:

0,1,2,3,4,5, ...

Natural Numbers:

1,2,3,4,5, ...

Irrational Numbers:

..., $-\sqrt{2}$, π , $\sqrt{3}$, ...

Exponent Rules: Combining Like Terms:

 $x^1 \times x^1 = x^{1+1} = x^2$ x + x = 2x

 $\frac{x^1}{x^1} = x^{1-1} = x^0$

3x - x = 2x

 $(x^3)^2 = x^{3 \times 2} = x^6$

 $3x^2 + x^2 + 5 = 4x^2 + 5$

 $5x^2 - 2x^2 + 10x - 5x = 3x^2 + 5x$

 $(xy)^2 = x^2y^2$

 $10x^2 + 4x - (8x^2 + 2x) =$ $10x^2 + 4x - 8x^2 - 2x = 2x^2 + 2x$ Factoring Methods to Know:

Greatest Common Factor (GCF)

Product/Sum

Quadratic Formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Completing the Square

Difference of Two Squares (DOTS)

Functions and their Equations:

Equation of a Line:

$$y = mx + b$$

$$m = slope$$

$$b = y - intercept$$

Slope Formula:

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{vertical\ change}{horizontal\ change}$$

Quadratic Equation:

$$ax^2 + bx + c = 0$$

Vertex Formula:

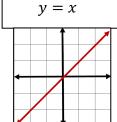
$$x = \frac{-b}{2a}$$

Quadratic Equation in vertex form:

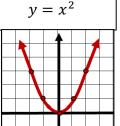
$$y = a(x - h)^2 + k$$

Vertex:
$$(h, k)$$

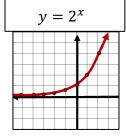
Exponential Equation:

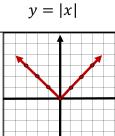

$$y = ab^x$$

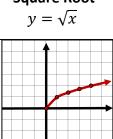
Exponential Growth:

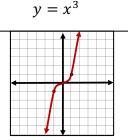

Exponential Decay:

Functions and their Graphs:


Line


Quadratic


Exponential


Absolute Value

Square Root

Cubic Polynomial

Measures of Central Tendency:

Mean: Average

Median: Middle (put numbers in order and find middle)

Mode: "Most" (number that appears the most) **Q1**: Quartile 1=Median of first half of data

Q2: Quartile 2=Median of all data

Q3: Quartile 3=Median of second half of data

Box and Whisker Plot:

Geometric Sequence Formula:

(Use when a sequence is formed by multiplying or dividing a number)

$$a_n = a_1 r^{n-1}$$

 $a_n = Term \ Value$

 $a_1 = First Term$

n = Term Number

r = Common Ratio

Compound Interest Formula:

$$A = P(1 + \frac{r}{n})^{nt}$$

P = Principle

r = Interest rate

 $n = number\ of\ compoundings\ per\ year$

t = Total number of years

Solve for F:
$$C = \frac{5}{9}(F - 32)$$

$$C = \frac{5}{9}(F - 32)$$

$$\frac{5}{9}$$

$$\frac{9}{5}C = F - 32$$

$$\frac{9}{5}C + 32 = F$$

Arithmetic Sequence Formula:

(Use when a sequence is formed by adding or subtracting a number)

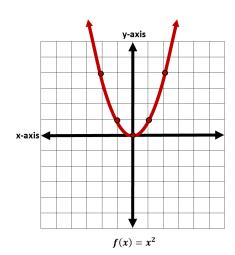
$$a_n = a_1 + (n-1)d$$

 $a_n = Term \ Value$

 $a_1 = First Term$

n = Term Number

d = Common Difference


Simplifying Radicals:

$$\sqrt{4}=2$$

$$\sqrt{40} = \sqrt{4 \cdot 10} = \sqrt{4}\sqrt{10} = 2\sqrt{10}$$

$$2\sqrt{18} + \sqrt{32} = 2\sqrt{9 \cdot 2} + \sqrt{16 \cdot 2}$$
$$= 2\sqrt{9}\sqrt{2} + \sqrt{16}\sqrt{2}$$
$$= 2 \cdot 3\sqrt{2} + 4\sqrt{2}$$
$$= 6\sqrt{2} + 4\sqrt{2}$$

Transformations of a Parabola: $f(x) = x^2$:

Function Transformation	What does it do to the graph?	Graph
y = f(x) + C	C > 0 moves up C < 0 moves down	$f(x) = x^2 + 2$
y = f(x + C)	C > 0 moves left C < 0 moves right	$f(x) = (x^2 + 2)$
y = Cf(x)	C > 1 moves closer to $y - axis0 < C < 1$ moves further from $y - axis$	$f(x) = 2x^2$
y = -f(x)	Reflection in the x — axis	$f(x) = -x^2$
y = f(-x)	Reflection in the y — axis	$f(x) = -x^2$

Area and Perimeter:

Shape		Perimeter	Area
Triangle	a c b	P = a + b + c	$A = \frac{1}{2}ab$
Square	s	P = 4s	$A = s^2$
Rectangle	l w	P = 2l + 2w	$A = l \times w$
Trapezoid		P = a + b + 2c	$A = \frac{1}{2}(a+b)h$
Circle	r	$C = \pi d$	$A = \pi r^2$

Tips and Tricks!

Circumference: Cherry Pie's Delicious $C=\pi d$

Area: Apple Pies Are Two $A = \pi r^2$

Basic Properties and Facts

Arithmetic Operations

$$ab + ac = a(b+c)$$
 $a\left(\frac{b}{c}\right) = \frac{ab}{c}$

$$\frac{\left(\frac{a}{b}\right)}{c} = \frac{a}{bc} \qquad \qquad \frac{a}{\left(\frac{b}{c}\right)} = \frac{ac}{b}$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \qquad \qquad \frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$$

$$\frac{a-b}{c-d} = \frac{b-a}{d-c} \qquad \qquad \frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$$

$$\frac{ab+ac}{a} = b+c, \ a \neq 0 \quad \frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)} = \frac{ad}{bc}$$

Exponent Properties

$$a^n a^m = a^{n+m} \qquad (ab)^n = a^n b^n$$

$$(a^n)^m=a^{nm}$$
 $a^0=1$, $a \neq 0$

$$\frac{a^n}{a^m} = a^{n-m} = \frac{1}{a^{m-n}} \qquad \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$a^{\frac{n}{m}} = \left(a^{\frac{1}{m}}\right)^n = (a^n)^{\frac{1}{m}} \quad \frac{1}{a^{-n}} = a^n$$

$$\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n = \frac{b^n}{a^n} \quad a^{-n} = \frac{1}{a^n}$$

Properties of Radicals

$$\sqrt[n]{a} = a^{\frac{1}{n}}$$
 $\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$

$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[nm]{a} \qquad \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

$$\sqrt[n]{a^n} = a$$
 if n is odd

$$\sqrt[n]{a^n} = |a| \text{ if } n \text{ is even}$$

Properties of Inequalities

If
$$a < b$$
 then $a + c < b + c$ and $a - c < b - c$

If
$$a < b$$
 and $c > 0$ then $ac < bc$ and $\frac{a}{c} < \frac{b}{c}$

If
$$a < b$$
 and $c < 0$ then $ac > bc$ and $\frac{a}{c} > \frac{b}{c}$

Properties of Absolute Value

$$|a| = \begin{cases} a & \text{if } a \ge 0 \\ -a & \text{if } a < 0 \end{cases}$$

$$|a| \ge 0 \qquad \qquad |-a| = |a|$$

$$|ab| = |a| |b|$$
 $\left| \frac{a}{b} \right| = \frac{|a|}{|b|}$

$$|a+b| \le |a| + |b|$$
 Triangle Inequality

Distance Formula

If $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ are two points the distance between them is

$$d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Complex Numbers

$$i=\sqrt{-1} \qquad i^2=-1 \quad \sqrt{-a}=i\sqrt{a}$$
 , $a\geq 0$

$$(a+bi) + (c+di) = a + c + (b+d)i$$

$$(a+bi) - (c+di) = a - c + (b-d)i$$

$$(a+bi)(c+di) = ac-bd+(ad+bc)i$$

$$(a+bi)(a-bi) = a^2 + b^2$$

$$|a+bi| = \sqrt{a^2 + b^2}$$
 Complex Modulus

$$\overline{(a+bi)} = a-bi$$
 Complex Conjugate

$$\overline{(a+bi)}(a+bi) = |a+bi|^2$$

Logarithms and Log Properties

Definition

$$y = \log_b(x)$$
 is equivalent to $x = b^y$

Example

$$\log_5(125) = 3$$
 because $5^3 = 125$

Special Logarithms

$$ln(x) = log_e(x)$$
 natural log

$$\log(x) = \log_{10}(x)$$
 common log

where
$$e = 2.718281828...$$

Logarithm Properties

$$\log_b(b) = 1 \qquad \qquad \log_b(1) = 0$$

$$\log_b(b^x) = x \qquad \qquad b^{\log_b(x)} = x$$

$$\log_b(x^r) = r \log_b(x)$$

$$\log_b(xy) = \log_b(x) + \log_b(y)$$

$$\log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y)$$

The domain of $\log_b(x)$ is x > 0

Factoring and Solving

Factoring Formulas

$$x^2 - a^2 = (x+a)(x-a)$$

$$x^2 + 2ax + a^2 = (x+a)^2$$

$$x^2 - 2ax + a^2 = (x - a)^2$$

$$x^{2} + (a + b) x + ab = (x + a) (x + b)$$

$$x^3 + 3ax^2 + 3a^2x + a^3 = (x+a)^3$$

$$x^3 - 3ax^2 + 3a^2x - a^3 = (x - a)^3$$

$$x^3 + a^3 = (x+a)(x^2 - ax + a^2)$$

$$x^{3} - a^{3} = (x - a)(x^{2} + ax + a^{2})$$

$$x^{2n} - a^{2n} = (x^n - a^n)(x^n + a^n)$$

If n is odd then.

$$x^{n} - a^{n} = (x - a) (x^{n-1} + ax^{n-2} + \dots + a^{n-1})$$

$$x^{n} + a^{n} = (x+a)(x^{n-1} - ax^{n-2} + a^{2}x^{n-3} - \dots + a^{n-1})$$

Quadratic Formula

Solve
$$ax^2 + bx + c = 0$$
, $a \neq 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

If $b^2 - 4ac > 0$ – Two real unequal solns.

If $b^2 - 4ac = 0$ – Repeated real solution.

If $b^2 - 4ac < 0$ – Two complex solutions.

Square Root Property

If
$$x^2 = p$$
 then $x = \pm \sqrt{p}$

Absolute Value Equations/Inequalities

If b is a positive number

$$|p| = b$$
 \Rightarrow $p = -b$ or $p = b$

$$|p| < b \quad \Rightarrow \quad -b < p < b$$

$$|p|>b \quad \Rightarrow \quad p<-b \ \text{or} \quad p>b$$

Completing the Square

Solve
$$2x^2 - 6x - 10 = 0$$

(1) Divide by the coefficient of the $x^2\,$

$$x^2 - 3x - 5 = 0$$

(2) Move the constant to the other side.

$$x^2 - 3x = 5$$

(3) Take half the coefficient of x, square it and add it to both sides

$$x^{2} - 3x + \left(-\frac{3}{2}\right)^{2} = 5 + \left(-\frac{3}{2}\right)^{2} = 5 + \frac{9}{4} = \frac{29}{4}$$

(4) Factor the left side

$$\left(x - \frac{3}{2}\right)^2 = \frac{29}{4}$$

(5) Use Square Root Property

$$x - \frac{3}{2} = \pm \sqrt{\frac{29}{4}} = \pm \frac{\sqrt{29}}{2}$$

(6) Solve for x

$$x = \frac{3}{2} \pm \frac{\sqrt{29}}{2}$$

Functions and Graphs

Constant Function

$$y = a$$
 or $f(x) = a$

Graph is a horizontal line passing through the The graph is a parabola that opens right if point (0, a).

Line/Linear Function

$$y = mx + b$$
 or $f(x) = mx + b$

Graph is a line with point (0, b) and slope m.

Slope

Slope of the line containing the two points (x_1, y_1) and (x_2, y_2) is

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\mathsf{rise}}{\mathsf{run}}$$

Slope – intercept form

The equation of the line with slope m and y-intercept (0,b) is

$$y = mx + b$$

Point - Slope form

The equation of the line with slope m and passing through the point (x_1, y_1) is

$$y = y_1 + m\left(x - x_1\right)$$

Parabola/Quadratic Function

$$y = a(x - h)^{2} + k$$
 $f(x) = a(x - h)^{2} + k$

The graph is a parabola that opens up if a > 0or down if a < 0 and has a vertex at (h, k).

Parabola/Quadratic Function

$$y = ax^{2} + bx + c$$
 $f(x) = ax^{2} + bx + c$

The graph is a parabola that opens up if a > 0or down if a < 0 and has a vertex at

$$\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right).$$

Parabola/Quadratic Function

$$x = ay^2 + by + c \qquad g(y) = ay^2 + by + c$$

a > 0 or left if a < 0 and has a vertex at

$$\left(g\left(-\frac{b}{2a}\right), -\frac{b}{2a}\right).$$

Circle

$$(x-h)^2 + (y-k)^2 = r^2$$

Graph is a circle with radius r and center (h, k).

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

Graph is an ellipse with center (h, k) with vertices a units right/left from the center and vertices b units up/down from the center.

Hyperbola

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

Graph is a hyperbola that opens left and right, has a center at (h, k), vertices a units left/right of center and asymptotes that pass through center with slope $\pm \frac{b}{a}$.

Hyperbola

$$\frac{(y-k)^2}{b^2} - \frac{(x-h)^2}{a^2} = 1$$

Graph is a hyperbola that opens up and down, has a center at (h, k), vertices b units up/down from the center and asymptotes that pass through center with slope $\pm \frac{b}{a}$

Common Algebraic Errors

Error	Reason/Correct/Justification/Example	
$\dfrac{2}{0} eq 0$ and $\dfrac{2}{0} eq 2$	Division by zero is undefined!	
$-3^2 \neq 9$	$-3^2 = -9$, $(-3)^2 = 9$ Watch parenthesis!	
$(x^2)^3 \neq x^5$	$(x^2)^3 = x^2 x^2 x^2 = x^6$	
$\frac{a}{b+c} \neq \frac{a}{b} + \frac{a}{c}$	$\frac{1}{2} = \frac{1}{1+1} \neq \frac{1}{1} + \frac{1}{1} = 2$	
$\frac{1}{x^2 + x^3} \neq x^{-2} + x^{-3}$	A more complex version of the previous error.	
$\frac{\cancel{a} + bx}{\cancel{a}} \neq 1 + bx$	$\frac{a+bx}{a} = \frac{a}{a} + \frac{bx}{a} = 1 + \frac{bx}{a}$ Beware of incorrect canceling!	
$-a(x-1) \neq -ax - a$	$-a\left(x-1 ight)=-ax+a$ Make sure you distribute the "-"!	
$(x+a)^2 \neq x^2 + a^2$	$(x+a)^{2} = (x+a)(x+a) = x^{2} + 2ax + a^{2}$	
$\sqrt{x^2 + a^2} \neq x + a$	$5 = \sqrt{25} = \sqrt{3^2 + 4^2} \neq \sqrt{3^2} + \sqrt{4^2} = 3 + 4 = 7$	
$\sqrt{x+a} \neq \sqrt{x} + \sqrt{a}$	See previous error.	
$(x+a)^n \neq x^n + a^n$ and $\sqrt[n]{x+a} \neq \sqrt[n]{x} + \sqrt[n]{a}$	More general versions of previous three errors.	
$2(x+1)^2 \neq (2x+2)^2$	$2(x+1)^2 = 2(x^2 + 2x + 1) = 2x^2 + 4x + 2$ $(2x+2)^2 = 4x^2 + 8x + 4$ Square first then distribute!	
$(2x+2)^2 \neq 2(x+1)^2$	See the previous example. You can not factor out a constant if there is a power on the parenthesis!	
$\sqrt{-x^2 + a^2} \neq -\sqrt{x^2 + a^2}$	$\sqrt{-x^2+a^2}=\left(-x^2+a^2\right)^{\frac{1}{2}}$ Now see the previous error.	
$\frac{a}{\left(\frac{b}{c}\right)} \neq \frac{ab}{c}$	$\frac{a}{\begin{pmatrix} \frac{b}{c} \end{pmatrix}} = \frac{\begin{pmatrix} \frac{a}{1} \end{pmatrix}}{\begin{pmatrix} \frac{b}{c} \end{pmatrix}} = \begin{pmatrix} \frac{a}{1} \end{pmatrix} \begin{pmatrix} \frac{c}{b} \end{pmatrix} = \frac{ac}{b}$	
$\frac{\left(\frac{a}{b}\right)}{c} \neq \frac{ac}{b}$	$\frac{\left(\frac{a}{b}\right)}{c} = \frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{1}\right)} = \left(\frac{a}{b}\right)\left(\frac{1}{c}\right) = \frac{a}{bc}$	